Recent Publications
論文・総説

2009年

  • Inaba, K., Murakami, S., Nakagawa, A., Iida, H., Kinjo, M., Ito, K. and Suzuki, M. (2009)
    Dynamic nature of disulphide bond formation catalysts revealed by crystal structures of DsbB. EMBO J. 28, 779-791.

2008年

  • Inaba, K., Suzuki, M., Maegawa, K. I., Akiyama, S., Ito, K. and Akiyama, Y. (2008)
    A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of E. coli. J. Biol. Chem. 283, 35042-35052.
  • Tsukazaki, T. a), Mori, H. a), Fukai, S., Ishitani, R., Mori, T., Dohmae, N., Perederina, A., Sugita, Y., Vassylyev, D. G., Ito, K. b) and Nureki, O. b) (2008)
    Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455, 988-991.
    a) equally contributed, b) corresponding authors
  • Muto, H. and Ito, K. (2008)
    Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Biochem. Biophys. Res. Commun. 366, 1043-1047.
  • Koide, K., Ito, K, and Akiyama, Y. (2008)
    Substrate recognition and binding by RseP, an Escherichia coli intramembrane protease. J. Biol. Chem. 283, 9562-9570.

2007年

  • Wang, Y. a), Maegawa, S. a), Akiyama, Y. b) and Ha, Y. b) (2007)
    The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J. Mol. Biol. 374, 1104-1113.
    a) equally contributed, b) corresponding authors
  • Akiyama, Y. and Maegawa, S. (2007)
    Sequence features of substrates required for cleavage by GlpG, an Escherichia coli rhomboid protease. Mol. Microbiol. 64, 1028-1037.
  • Maegawa, S., Koide, K., Ito, K., and Akiyama, Y. (2007)
    The intramembrane active site of GlpG, an Escherichia coli rhomboid protease, is accessible to water and hydrolyzes an extramembrane peptide-bond of substrates. Mol. Microbiol. 64, 435-447.
  • Koide, K., Maegawa, S., Ito, K., and Akiyama, Y. (2007)
    Environments of the active site region of RseP, an Escherichia coli RIP protease, assessed by site-directed cysteine alkylation. J. Biol. Chem. 282, 4553-4560.
  • Shimohata, N., Nagamori, S., Akiyama, Y., Kaback, H.R., and Ito, K. (2007)
    SecY alterations that impair membrane protein folding and generate a membrane stress. J. Cell Biol. 176, 307-317.

2006年

  • Vassylyev, D. G., Mori, H., Vassylyeva, M. N., Tsukazaki, T., Kimura, Y., and Ito, K. (2006)
    Crystal structure of the translocation ATPase SecA from Thermus thermophilus reveals a parallel, head-to-head dimer. J. Mol. Biol. 364, 248-258.
  • Vassylyeva, M. N., Mori, H., Tsukazaki, T., Yokoyama, S., Tahirov, T. H., Ito, K. and Vassylyev, D. G. (2006)
    Cloning, expression, purification, crystallization and initial crystallographic analysis of the preprotein translocation ATPase SecA from Thermus thermophilus. Acta Cryst. F62, 909-912.
  • Tsukazaki, T., Mori, H., Fukai, S., Numata, T., Perederin, A., Adachi, H., Matsumura, H., Takano, K., Murakami, S., Inoue, T., Mori, Y., Sasaki, T., Vassylyev, D., Nureki, O. and Ito, K. (2006)
    Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, from Thermus thermophilus. Acta Cryst. F62, 376-380.
  • Chiba, S., Ito, K. and Akiyama, Y. (2006)
    The Escherichia coli plasma membrane contains two PHB (prohibitin homology) domain protein complexes of opposite orientations. Mol. Microbiol. 60, 448-457.
  • Mori, H. and Ito, K. (2006)
    The long a-helix of SecA is important for the ATPase coupling of translocation. J. Biol. Chem. 281, 36249-36256.
  • Mori, H. and Ito, K. (2006)
    Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-crosslinking. Proc. Natl. Acad.
    Sci. USA. 103, 16159-16164.

2005年

  • Nakatogawa, H., Murakami, A.、Mori, H. and Ito, K. (2005)
    SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev. 19, 436-444.
  • Maegawa, S., Ito, K. and Akiyama, Y. (2005)
    Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 41, 13543-13552.
  • Sakoh, M., Ito, K. and Akiyama, Y. (2005)
    Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease of E. coli. J. Biol. Chem. 280, 33305-33310.
  • Shimohata, N., Akiyama, Y. and Ito, K. (2005)
    Peculiar properties of DsbA in its export across the E. coli cytoplasmic membrane. J. Bacteriol. 187, 3997-4004.

2004年

  • Akiyama, Y., Kanehara, K. and Ito, K. (2004)
    RseP (YaeL), an E. coli RIP protease, cleaves transmembrane sequences. EMBO J. 23, 4434-4442.
  • Mori, H., Shimokawa, N., Satoh, Y. and Ito, K. (2004)
    Mutation analysis of transmembrane regions 3 and 4 of SecY, a central component of protein translocase. J. Bacteriol. 186, 3960-3969.
  • Saikawa, N., Akiyama, Y. and Ito, K. (2004)
    FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146, 123-129.

2003年

  • Mori, H., Tsukazaki, T., Masui, R., Kuramitsu, S., Yokoyama, S., Johnson, A.
    E., Kimura, Y., Akiyama, Y. and Ito, K. (2003)
    Fluorescence resonance energy transfer analysis of protein translocase: SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J. Biol. Chem. 278, 14257-14264.
  • Cairrao, F., Cruz, A., Mori, H. and Arraiano, C. M. (2003)
    Cold shock induction of RNase R and its role in the maturation of the quality control mediator SsrA/tmRNA.Mol. Microbiol., 50, 1349-1360.
  • Kanehara, K., Ito, K. and Akiyama, Y (2003) YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J. 22, 6389-6398.
  • Satoh, Y., Mori, H. and Ito, K. (2003)
    Nearest neighbor analysis of the SecYEG complex. II. Identification of a SecY-SecE cytosolic interface.
    Biochemistry 42, 7442-7447.
  • Satoh, Y., Matsumoto, G., Mori, H. and Ito, K. (2003)
    Nearest neighbor analysis of the SecYEG complex. I. Identification of a SecY-SecG interface.
    Biochemistry 42, 7434-7441.
  • Akiyama, Y. and Ito, K. (2003)
    Reconstitution of membrane proteolysis by FtsH. J. Biol. Chem. 278, 18146-18153.
  • Matsuo, E., Mori, H. and Ito, K. (2003)
    Interfering mutations provide in vivo evidence that Escherichia coli SecE functions in multimeric states. Mol. Gen. Genomics 268, 808-815.
  • Shimokawa, N., Mori, H. and Ito, K. (2003)
    Importance of transmembrane segments in SecY. Mol. Gen. Genomics 269, 180-187.
  • Mori, H., Akiyama, Y. and Ito, K. (2003)
    A SecE mutation that modulates SecY-SecE translocase assembly, identified as a specific suppressor against SecY defects. J. Bacteriol. 185, 948-956.
  • Mori, H. and Ito, K. (2003)
    Biochemical characterization of a mutationally altered protein translocase: proton-motive force stimulation of the initiation phase of translocation. J. Bacteriol. 185, 405-412.

2002年

  • Shimohata, N., Chiba, S., Saikawa, N., Ito, K. and Akiyama, Y. (2002)
    The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with cytosolic active site. Genes Cells, 7, 653-662.
  • Mori, H., Shimizu, Y. and Ito, K. (2002)
    Super active SecY variants that fulfill the essential translocation function with a reduced cellular quantity. J. Biol. Chem. 277, 48550-48557.
  • Kanehara, K., Ito, K. and Akiyama, Y. (2002)
    YaeL (EcfE) activates the sE pathway of stress response through a site-2 cleavage of anti-σE, RseA. Genes Dev. 16, 2147-2155.
  • Chiba, S., Akiyama, Y. and Ito, K. (2002)
    Membrane protein degradation by FtsH can be initiated from either end. J. Bacteriol. 184, 4775-4782.
  • Akiyama, Y. (2002)
    Proton-motive force stimulates the proteolytic activity of FtsH, a membrane-bound ATP-dependent protease in E. coli. Proc. Natl. Acad. Sci. USA 99, 8066-8071.
  • Chiba, K., Mori, H. and Ito, K. (2002)
    Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli. J. Bacteriol. 184, 2243-2250.
  • Saikawa, N., Ito, K. and Akiyama, Y. (2002)
    Identification of glutamic acid 479 as the gluzincin coordinator of zinc in FtsH (HflB).
    Biochemistry 41, 1861-1868.

2001年

  • Kanehara, K., Akiyama, Y. and Ito, K. (2001)
    Characterization of the yaeL gene product and its S2P-protease motifs in Escherichia coli. Gene. 281, 71-79.
  • Akiyama, Y. and Ito, K. (2001)
    Roles of the homo-oligomerization and membrane association in the ATPase and the proteolytic activities of FtsH in vitro. Biochemistry 40, 7687-7693.
  • Kihara, A., Akiyama, Y. and Ito, K. (2001)
    Revisiting the lysogenization control of bacteriophage l: Identification and characterization of a new host component, HflD. J. Biol. Chem. 276, 13695-13700.
  • Mori, H. and Ito, K. (2001)
    An essential amino acid residue in protein translocation channel revealed by targeted random mutagenesis of SecY.
    Proc. Natl. Acad. Sci. USA. 98, 5128-5133.

2000年

  • Matsumoto, G., Homma, T., Mori, H. and Ito, K. (2000)
    A mutation in secY that causes enhanced SecA insertion and impaired late functions in protein translocation. J. Bacteriol., 182, 3377-3382
  • Nakatogawa, H., Mori, H., Matsumoto, G. and Ito, K. (2000)
    Characterization of a mutant form of SecA that alleviates a SecY defect at low temperature and shows a synthetic defect with the SecY alteration at high temperature. J. Biochem., 127, 1071 – 1079.
  • Chiba, S., Akiyama, Y., Mori, H., Matsuo, E. and Ito, K. (2000)
    Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Reports 1, 47-52.
  • Akiyama, Y. and Ito, K. (2000)
    Roles of multimirization and membrane association in the proteolytic functions of FtsH (HflB).
    EMBO J. 19, 3888-3895.
  • Tatsuta, T., Joo, D. M., Calendar, R., Akiyama, Y. and Ogura, T. (2000)
    Evidence for an active role of the DnaK chaperone system in the degradation of s32. FEBS Lett. 478, 271-275.
  • Nakatogawa, H., Mori, H. and Ito, K. (2000)
    Two independent mechanisms down-regulate the intrinsic SecA ATPase activity. J. Biol. Chem. 275, 33209-33212.
  • Matsumoto, G., Nakatogawa, H., Mori, H. and Ito, K. (2000)
    Genetic dissection of SecA: suppressor mutations against the secY205 translocase defect. Genes Cells 5, 991-1000.